1,146 research outputs found

    Jupiter: New estimates of mean zonal flow at the cloud level

    Get PDF
    In order to reexamine the magnitude differences of the Jovian atmosphere's jets, as determined by Voyager 1 and 2 images, a novel approach is used to ascertain the zonal mean east-west component of motion. This technique is based on digital pattern matching, and is applied on pairs of mapped images to yield a profile of the mean zonal component that reproduces the exact locations of the easterly and westerly jets between + and 60 deg latitude. Results were obtained for all of the Voyager 1 and 2 cylindrical mosaics; the correlation coefficient between Voyagers 1 and 2 in mean zonal flow between + and - 60 deg latitude, determined from violet filter mosaics, is 0.998

    Morphology and movements of polarization features on Venus

    Get PDF
    Ground and spacecraft based polarization observations of Venus detected the signature of the so called 1-micron radius cloud particles that constitute the main cloud deck on Venus, as well as that of sub-micron sized particles that form a haze above this main cloud layer. Whether such observations showed any local clustering or organization in the polarimetry data remained uncertain until the relatively high resolution observations from the Pioneer Venus Orbiter Cloud Photopolarimeter (OCPP) became available. The available polarization data from this instrument was studied to see whether local organization was present, to study the morphology of such features or polarization clouds, and finally, to see if they can be followed in a sequence of observations to study their motions

    Temporal Evolution of SL-9 Impact Sites on Jupiter and Global Maps of Jupiter from Multi-Observatory Visible and Infrared Images

    Get PDF
    The objective of this research was to investigate the temporal behavior of the impact features on Jupiter created by the fragments of the Shoemaker Levy-9 comet that collided with the planet in July 1994. The primary observations used in the study were ground based images of Jupiter acquired from the Swedish Solar Vacuum Tube on the island of La Palma in the Canary Islands. The measurement of position of the impact features in images acquired immediately after the impact over a period of a few days revealed that the apparent drift rates were too high and that a repetitive pattern could be seen in the longitude position on successive rotations. This could be explained only by the fact that the measured longitudes of the impact sites were being affected by parallax due to a significant elevation of the impact debris above the nominal cloud top altitude value used for image navigation. Once the apparent positions are analyzed as a function of the meridian angle, the parallax equation can be used to infer the height of the impact features above the cloud deck, once the true impact position (longitude) for the feature is known. Due to their inherent high spatial resolution, the HST measurements of the impact site locations have been accepted widely. However, these suffer from the parallax themselves since few of them were obtained at central meridian. Ground based imaging have the potential to improve this knowledge as they do observe most of the impact sites on either side of the central meridian, except for the degraded resolution. Measurements over a large number of images enables us to minimize the position error through regression and thus estimate both the actual impact site location devoid of parallax bias, and also of the altitude level of the impact debris above the cloud deck. With rapid imaging there is the potential to examine the time evolution of the altitude level. Several hundred ground based images were processed, navigated and subjected to the impact site location measurements. HST images were also acquired and used to calibrate the results and to improve the sample. The resources available enabled an in-depth study only of impact site A, however, many more images have since become available through the global network observations through Lowell Observatory

    A vector-based method for bank-material tracking in coupled models of meandering and landscape evolution

    Get PDF
    Sinuous channels commonly migrate laterally and interact with banks of different strengths—an interplay that links geomorphology and life and shapes diverse landscapes from the seafloor to planetary surfaces. To investigate feedbacks between meandering rivers and landscapes over geomorphic timescales, numerical models typically represent bank properties using grids; however, this approach produces results inherently dependent on grid resolution. Herein we assess existing techniques for tracking landscape and bank-strength evolution in numerical models of meandering channels and show that grid-based models implicitly include unintended thresholds for bank migration that can control simulated landscape evolution. Building on stratigraphic modeling techniques, we develop a vector-based method for land surface- and subsurface-material tracking that overcomes the resolution-dependence inherent in grid-based techniques by allowing high-fidelity representation of bank-material properties for curvilinear banks and low channel lateral migration rates. We illustrate four specific applications of the new technique: (1) the effect of resistant mud-rich deposits in abandoned meander cutoff loops on meander belt evolution; (2) the stratigraphic architecture of aggrading, alluvial meandering channels that interact with cohesive-bank and floodplain material; (3) the evolution of an incising, meandering river with mixed bedrock and alluvial banks within a confined bedrock valley; and (4) the effect of a bank-height dependent lateral-erosion rate for a meandering river in an aggrading floodplain. In all cases the vector-based approach overcomes numerical artifacts with the grid-based model. Because of its geometric flexibility, the vector-based material tracking approach provides new opportunities for exploring the coevolution of meandering rivers and surrounding landscapes over geologic timescales

    Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material

    Get PDF
    Bedrock river valleys are fundamental components of many landscapes, and their morphologies—from slot canyons with incised meanders to wide valleys with strath terraces—may record environmental history. Several formation mechanisms for particular valley types have been proposed that involve changes in climatic and tectonic forcing, but the uniqueness of valley evolution pathways and the long-term stability of valley morphology under constant forcing are unknown and are not predicted in existing numerical models for vertically incising rivers. Because rivers often migrate more rapidly through alluvium than through bedrock, we explore the hypothesis that the distribution of bank materials strongly influences river meandering kinematics and can explain the diversity of bedrock river valley morphology. Simulations using a numerical model of river meandering with vector-based bank-material tracking indicate that channel lateral erosion rate in sediment and bedrock, vertical erosion rate, and initial alluvial-belt width explain first-order differences in bedrock valley type; that bedrock-bound channels can evolve under steady forcing from alluvial states; and that weak bedrock and low vertical incision rates favor wide, shallow valleys, while resistant bedrock and high vertical incision rates favor narrow, deep valleys. During vertical incision, sustained planation of the valley floor is favored when bedrock boundaries restrict channel migration to a zone of thin sediment fill. The inherent unsteadiness of river meandering in space and time is enhanced by evolving spatial contrasts in bank strength between sediment and bedrock and can account for several valley features—including strath terraces and underfit valleys—commonly ascribed to external drivers

    AN APPLICATION OF THE PHOSPHORUS CONSISTENT RULE FOR ENVIRONMENTALLY ACCEPTABLE COST-EFFICIENT MANAGEMENT OF BROILER LITTER IN CROP PRODUCTION

    Get PDF
    We calculated the profitability of using broiler litter as a source of plant nutrients using the phosphorus consistent litter application rule. The cost saving by using litter is 37% over the use of chemical fertilizer alone to meet the nutrient needs of major crops grown in Alabama. In the optimal solution, only a few routes of all the possible routes developed were used for inter- and intra- county litter hauling. If litter is not adopted as the sole source of crop nutrients, the best environmental policy may be to pair the phosphorus consistent rule with taxes, marketable permits, and subsidies.Environmental Economics and Policy, Production Economics,

    Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Get PDF
    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula

    On the Complexity of Temporal-Logic Path Checking

    Full text link
    Given a formula in a temporal logic such as LTL or MTL, a fundamental problem is the complexity of evaluating the formula on a given finite word. For LTL, the complexity of this task was recently shown to be in NC. In this paper, we present an NC algorithm for MTL, a quantitative (or metric) extension of LTL, and give an NCC algorithm for UTL, the unary fragment of LTL. At the time of writing, MTL is the most expressive logic with an NC path-checking algorithm, and UTL is the most expressive fragment of LTL with a more efficient path-checking algorithm than for full LTL (subject to standard complexity-theoretic assumptions). We then establish a connection between LTL path checking and planar circuits, which we exploit to show that any further progress in determining the precise complexity of LTL path checking would immediately entail more efficient evaluation algorithms than are known for a certain class of planar circuits. The connection further implies that the complexity of LTL path checking depends on the Boolean connectives allowed: adding Boolean exclusive or yields a temporal logic with P-complete path-checking problem
    • …
    corecore